120 research outputs found

    Demonstration of OPSORO : an open platform for social robots

    Get PDF
    One of the major obstacles in the study of human- robot interaction with social robots is the lack of platforms to allow for tests with large user groups. Often, the price of these robots prohibits using more than a handful of robots. Another factor is that with commercial platforms, the robots do not possess all the necessary features to perform an experiment and due to the closed nature of the platform, extensive modifications are nearly impossible. To address this problem, a new social robotics platform, OPSORO, is presented. The platform uses an innovative modular system design that enables the creation of different embodiments to represent anthropomorphic robots focusing on face-to-face communication. Our goal is to offer a platform for the development of robotic characters, typically within the context of therapeutics or entertainment. OPSORO is a unique system that provides real personalization of social robots

    Ono: an open platform for social robotics

    Get PDF
    In recent times, the focal point of research in robotics has shifted from industrial ro- bots toward robots that interact with humans in an intuitive and safe manner. This evolution has resulted in the subfield of social robotics, which pertains to robots that function in a human environment and that can communicate with humans in an int- uitive way, e.g. with facial expressions. Social robots have the potential to impact many different aspects of our lives, but one particularly promising application is the use of robots in therapy, such as the treatment of children with autism. Unfortunately, many of the existing social robots are neither suited for practical use in therapy nor for large scale studies, mainly because they are expensive, one-of-a-kind robots that are hard to modify to suit a specific need. We created Ono, a social robotics platform, to tackle these issues. Ono is composed entirely from off-the-shelf components and cheap materials, and can be built at a local FabLab at the fraction of the cost of other robots. Ono is also entirely open source and the modular design further encourages modification and reuse of parts of the platform

    Development of the huggable social robot Probo: on the conceptual design and software architecture

    Get PDF
    This dissertation presents the development of a huggable social robot named Probo. Probo embodies a stuffed imaginary animal, providing a soft touch and a huggable appearance. Probo's purpose is to serve as a multidisciplinary research platform for human-robot interaction focused on children. In terms of a social robot, Probo is classified as a social interface supporting non-verbal communication. Probo's social skills are thereby limited to a reactive level. To close the gap with higher levels of interaction, an innovative system for shared control with a human operator is introduced. The software architecture de nes a modular structure to incorporate all systems into a single control center. This control center is accompanied with a 3D virtual model of Probo, simulating all motions of the robot and providing a visual feedback to the operator. Additionally, the model allows us to advance on user-testing and evaluation of newly designed systems. The robot reacts on basic input stimuli that it perceives during interaction. The input stimuli, that can be referred to as low-level perceptions, are derived from vision analysis, audio analysis, touch analysis and object identification. The stimuli will influence the attention and homeostatic system, used to de ne the robot's point of attention, current emotional state and corresponding facial expression. The recognition of these facial expressions has been evaluated in various user-studies. To evaluate the collaboration of the software components, a social interactive game for children, Probogotchi, has been developed. To facilitate interaction with children, Probo has an identity and corresponding history. Safety is ensured through Probo's soft embodiment and intrinsic safe actuation systems. To convey the illusion of life in a robotic creature, tools for the creation and management of motion sequences are put into the hands of the operator. All motions generated from operator triggered systems are combined with the motions originating from the autonomous reactive systems. The resulting motion is subsequently smoothened and transmitted to the actuation systems. With future applications to come, Probo is an ideal platform to create a friendly companion for hospitalised children

    Designing products with a focus on self-explanatory assembly, a case study

    Get PDF
    Designing products with a focus on self-explanatory assembly can reduce the use of procedural instructions and the associated problems. This paper describes how different groups of students, in two different design-engineering courses designed or redesigned products in an attempt to make the assembly of the product self-explanatory. The design outcomes are discussed in relation to the design context and linked to existing theory on design for meaning

    An open platform for the design of social robot embodiments for face- to-face communication

    Get PDF
    The role of the physical embodiment of a social robot is of key importance during the interaction with humans. If we want to study the interactions we need to be able to change the robot’s embodiment to the nature of the experiment. Nowadays, researchers build one-off robots from scratch or choose to use a commercially available platform. This is justified by the time and budget constraints and the lack of design tools for social robots. In this work, we introduce an affordable open source platform to accelerate the design and production of novel social robot embodiments, with a focus on face-to-face communication. We describe an experiment where Industrial Design students created physical embodiments for 10 new social robots using our platform, detailing the design methodology followed during the different steps of the process. The paper gives an overview of the platform modules used by each of the robots, the skinning techniques employed, as well as the perceived usability of the platform. In summary, we show that our platform (1) enables non-experts to design new social robot embodiments, (2) allows a wide variety of different robots to be built with the same building blocks, and (3) affords itself to being adapted and extended

    INNOWIZ: a guided framework for projects in industrial design education

    Get PDF
    This paper presents the concrete application of the INNOWIZ methodology in a design education context. This methodical philosophy is used as a structural backbone in teaching the product design process to students in industrial product design. Observations and teaching experience concluded that these students need a METHOD to manage their creative processes, INSPIRATION in the form of tools and techniques to reach to the breakthrough ideas and make them more tangible one step at a time, and a PERSONAL APPROACH to tackle any specific situation and to deal with many different design briefs

    Demonstration of OPSORO's Grid System

    Get PDF

    Systems overview of Ono: a DIY reproducible open source social robot

    Get PDF
    One of the major obstacles in the study of HRI (human-robot interaction) with social robots is the lack of multiple identical robots that allow testing with large user groups. Often, the price of these robots prohibits using more than a handful. A lot of the commercial robots do not possess all the necessary features to perform specific HRI experiments and due to the closed nature of the platform, large modifications are nearly impossible. While open source social robots do exist, they often use high-end components and expensive manufacturing techniques, making them unsuitable for easy reproduction. To address this problem, a new social robotics platform, named Ono, was developed. The design is based on the DIY mindset of the maker movement, using off-the-shelf components and more accessible rapid prototyping and manufacturing techniques. The modular structure of the robot makes it easy to adapt to the needs of the experiment and by embracing the open source mentality, the robot can be easily reproduced or further developed by a community of users. The low cost, open nature and DIY friendliness of the robot make it an ideal candidate for HRI studies that require a large user group
    • …
    corecore